

## HA-003-2016032

## B. Sc. (Sem. VI) (CBCS) (W.E.F. 2019) Examination

**April - 2023** 

Physics: P-602

(Statistical Mechanics and Solid State Physics)
(New Course)

Faculty Code: 003

Subject Code: 2016032

Time:  $2\frac{1}{2}$  / Total Marks: 70

## **Instructions:**

- (1) All questions are compulsory.
- (2) Figures on right hand side indicate marks.
- (3) Symbols have their usual meanings.
- 1 (a) Write a short answer to the following:

- 4
- (1) Which statistics is applicable to particles which are identical and distinguishable?
- (2) "fermions" are identical and indistinguishable particles with spin.
- (3) In case of B-E statistics, only one particle can be accommodated in a given quantum state or a cell. Do you agree ?
- (4) An interchange of phase points between two cells gives rise to a new microstate. Is it true or false?
- (b) Answer in brief for the following: (any one):

2

- (1) Using uncertainty principle show that the minimum volume of a cell in a phase space is h<sup>3</sup>.
- (2) If an energy level having degeneracy  $g_i = 4$  is to be occupied by 3 particles. Find the number of ways to arrange them in case of F-D statistics.
- (c) Answer the following: (any one)

3

- (1) State and prove the Sterling's theorem.
- (2) Derive an equation of volume in Phase space in terms of momentum.

|   | (d) | Answ  | ver in detail : (any one)                                                                                                            | 5 |
|---|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------|---|
|   |     |       | Derive the most probable distribution formula for M-B statistics.                                                                    |   |
|   |     | (2)   | Derive the distribution law for Bose-Einstein statistics.                                                                            |   |
| 2 | (a) | Write | e a short answer to the following:                                                                                                   | 4 |
|   |     |       | The alkali metals like Na, Li have a crystal structure.                                                                              |   |
|   |     |       | In covalent bond, spins of two electrons are parallel. – Is it true?                                                                 |   |
|   |     |       | Covalent crystals are (transparant/opaque) to short wavelength radiation.                                                            |   |
|   |     |       | According to Debye, a solid is an isotropic elastic continuum. – Do you agree ?                                                      |   |
|   | (b) |       | ver in brief for the following: (any one)                                                                                            | 2 |
|   |     | (1)   | Draw a figure for a cubic crystal having Miller indices (100).                                                                       |   |
|   |     | ` ,   | In case of solids, if the Plank's constant is increased ten times then what will be the effect on its specific heat C <sub>y</sub> ? |   |
|   | (c) |       | ver the following: (any one)                                                                                                         | 3 |
|   | (0) |       | Explain Simple Cubic (SC) structure.                                                                                                 | 3 |
|   |     |       | Write a note on ionic crystal.                                                                                                       |   |
|   | (d) |       | e in detail (any one) :                                                                                                              | 5 |
|   | (4) | (1)   | Describe in detail: Hexagonal Closed Packed (hcp) crystal.                                                                           |   |
|   |     |       | Discuss: The Einstein model for Specific heat of solids.                                                                             |   |
| 3 | (a) | Write | e a short answer to the following:                                                                                                   | 4 |
|   |     |       | For most metals, resistivity is directly proportional to the pressure. (True/False)                                                  |   |
|   |     | (2)   | Write Widemann - Franz relation.                                                                                                     |   |
|   |     | ` /   | The characteristic property of metals is their luster. (low/high)                                                                    |   |
|   |     |       | The value of Fermi energy changes with size of metal.  – Do you agree ?                                                              |   |
|   | (b) | Answ  | ver the following: (any one)                                                                                                         | 2 |
|   |     |       | The Fermi energy for Sodium is 3.1 eV. Calculate Fermi velocity for it.                                                              |   |
|   |     |       | The number of free electrons per unit volume of Silver is $5.85 \times 10^{28}$ . Calculate Fermi energy for it.                     |   |

|   | (c) | Answer the following : (any one)                                                      | 3 |
|---|-----|---------------------------------------------------------------------------------------|---|
|   |     | (1) Write a note on momentum space.                                                   |   |
|   |     | (2) Describe criticism of Sommerfeld's theory.                                        |   |
|   | (d) | Write in detail : (any one)                                                           | 5 |
|   |     | (1) Describe Drude-Lorentz theory.                                                    |   |
|   |     | (2) Discuss quantum theory of free electron in one-                                   |   |
|   |     | dimensional box.                                                                      |   |
| 4 | (a) | Write a short answer to the following:                                                | 4 |
|   |     | (1) Semiconductors have temperature coefficient of resistance. (positive/negative)    |   |
|   |     | (2) Define mobility of charge carrier.                                                |   |
|   |     | (3) In case of "excess" semiconductors, the Hall coefficient                          |   |
|   |     | is negative Do you agree ?                                                            |   |
|   |     | (4) Measurement of Hall coefficient gives the information                             |   |
|   |     | about the sign of the charge carrier. – Is it true or false?                          |   |
|   | (b) | Answer the following: (any one)                                                       | 2 |
|   |     | (1) Find the mobility of electrons in copper if its resistivity                       |   |
|   |     | is $1.7 \times 10^{-6}$ ohm-cm and number density is                                  |   |
|   |     | $8.49 \times 10^{22} \text{ cm}^{-3}$ .                                               |   |
|   |     | (2) At room temperature, resistivity of N-type Ge atom is                             |   |
|   |     | 0.01 ohm-m. If the mobility of electron is 0.39                                       |   |
|   |     | m <sup>2</sup> /volt-sec, then find the number of electrons per unit                  |   |
|   |     | volume for this semiconductor.                                                        |   |
|   | (c) | Answer the following : (any one)                                                      | 3 |
|   | (-) | (1) Describe importance of the Hall effect.                                           |   |
|   |     | (2) Explain conductivity of semiconductors.                                           |   |
|   | (d) | Write in detail : (any one)                                                           | 5 |
|   | ()  | (1) Describe Hall effect in detail.                                                   |   |
|   |     | (2) Discuss: Simplified model of an intrinsic                                         |   |
|   |     | semiconductors.                                                                       |   |
| 5 | (a) | Write a short answer to the following:                                                | 4 |
|   |     | (1) Onnes found that the resistance of mercury drops                                  |   |
|   |     | suddenly to almost zero when the temperature falls below ${}^{\mathrm{o}}\mathrm{K}.$ |   |
|   |     |                                                                                       |   |
|   |     | (2) A superconductor exhibits a perfect (ferromagnetism/diamagnetism)                 |   |
|   |     | (3) For alloys, the transition temperature is extremely high.                         |   |
|   |     | – Do you agree ?                                                                      |   |
|   |     | (4) In case of superconductors, when atomic mass of                                   |   |
|   |     | isotopes (increases/decreases), its critical                                          |   |
|   |     | temperature decreases.                                                                |   |

3

[ Contd...

**HA-003-2016032**]

- (b) Answer the following: (any one)
  - (1) Transition temperature of Hg having average mass 200 a.m.u. is 4.153 K. If one of its isotope has 204 a.m.u. mass, find its transition temperature.
  - (2) If initial magnetic field is 20.7 x 10<sup>5</sup> amp/m at 4.2 K temperature for a superconducting specimen, find critical field at critical temperature 14.5 K.
- (c) Answer the following: (any one)

3

2

- (1) Explain Meissner effect.
- (2) Discuss properties which do not change in superconducting transition.
- (d) Write in detail: (any one)

- 5
- (1) Write a note: Applications of superconductivity.
- (2) Explain in detail: London's theory.